The cytoplasmic poly(A) polymerases GLD-2 and GLD-4 promote general gene expression via distinct mechanisms

نویسندگان

  • Marco Nousch
  • Assa Yeroslaviz
  • Bianca Habermann
  • Christian R. Eckmann
چکیده

Post-transcriptional gene regulation mechanisms decide on cellular mRNA activities. Essential gatekeepers of post-transcriptional mRNA regulation are broadly conserved mRNA-modifying enzymes, such as cytoplasmic poly(A) polymerases (cytoPAPs). Although these non-canonical nucleotidyltransferases efficiently elongate mRNA poly(A) tails in artificial tethering assays, we still know little about their global impact on poly(A) metabolism and their individual molecular roles in promoting protein production in organisms. Here, we use the animal model Caenorhabditis elegans to investigate the global mechanisms of two germline-enriched cytoPAPs, GLD-2 and GLD-4, by combining polysome profiling with RNA sequencing. Our analyses suggest that GLD-2 activity mediates mRNA stability of many translationally repressed mRNAs. This correlates with a general shortening of long poly(A) tails in gld-2-compromised animals, suggesting that most if not all targets are stabilized via robust GLD-2-mediated polyadenylation. By contrast, only mild polyadenylation defects are found in gld-4-compromised animals and few mRNAs change in abundance. Interestingly, we detect a reduced number of polysomes in gld-4 mutants and GLD-4 protein co-sediments with polysomes, which together suggest that GLD-4 might stimulate or maintain translation directly. Our combined data show that distinct cytoPAPs employ different RNA-regulatory mechanisms to promote gene expression, offering new insights into translational activation of mRNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila.

Cytoplasmic polyadenylation has an essential role in activating maternal mRNA translation during early development. In vertebrates, the reaction requires CPEB, an RNA-binding protein and the poly(A) polymerase GLD-2. GLD-2-type poly(A) polymerases form a family clearly distinguishable from canonical poly(A) polymerases (PAPs). In Drosophila, canonical PAP is involved in cytoplasmic polyadenylat...

متن کامل

Structural basis for the activation of the C. elegans noncanonical cytoplasmic poly(A)-polymerase GLD-2 by GLD-3.

The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain t...

متن کامل

Mammalian GLD-2 homologs are poly(A) polymerases.

GLD-2 is a cytoplasmic poly(A) polymerase present in the Caenorhabditis elegans germ line and embryo. It is a divergent member of the DNA polymerase beta nucleotidyl transferase superfamily, which includes CCA-adding enzymes, DNA polymerases and eukaryotic nuclear poly(A) polymerases. The polyadenylation activity of GLD-2 is stimulated by physical interaction with an RNA binding protein, GLD-3....

متن کامل

Translational activation maintains germline tissue homeostasis during adulthood

Adult tissue maintenance is achieved through a tightly controlled equilibrium of 2 opposing cell fates: stem cell proliferation and differentiation. In recent years, the germ line emerged as a powerful in vivo model tissue to investigate the underlying gene expression mechanisms regulating this balance. Studies in numerous organisms highlighted the prevalence of post-transcriptional mRNA regula...

متن کامل

Antagonism between GLD-2 binding partners controls gamete sex.

Cytoplasmic polyadenylation is a key mechanism of gene control. In Caenorhabditis elegans, GLD-2 and GLD-3 provide the catalytic and RNA-binding subunits, respectively, of a major cytoplasmic poly(A) polymerase (PAP). Here, we identify RNP-8 as a second GLD-2 partner. RNP-8 binds GLD-2 and stimulates GLD-2 activity to form a functional PAP, much like GLD-3. Moreover, GLD-2/RNP-8 and GLD-2/GLD-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014